Acta Cryst. (1976). B32, 979
The structure of bis[dichloro-6-mercaptopuriniumcopper(I)] dihydrate: a refinement.* By Anita L. Shoemaker,
Phirtu Singh and Derek J. Hodgson, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.

(Received 18 October 1975; accepted 6 November 1975)

Abstract

The structure of bis[dichloro-6-mercaptopuriniumcopper(I] dihydrate has been refined in the centrosymmetric space group $P \overline{1}$ instead of the previously reported $P 1$. The structural results obtained are consistent with those found for other 6-mercaptopurine complexes and statistical tests demonstrate that $P \overline{1}$ is the correct space group.

We and others have recently been investigating the interactions of metal ions with purines and purine analogs (Purnell, Estes \& Hodgson, 1976; Purnell, Shepherd \& Hodgson, 1975; Heitner \& Lippard, 1974; Sletten \& Apeland, 1975; and references therein). We were, therefore, interested to see the report (Caira \& Nassimbeni, 1975, hereinafter C. \& N) of the structure of a dimeric copper(I) complex of 6 -mercaptopurine. Examination of the quantitative features of the above structure, however, suggested that there were large errors in the bond lengths and angles reported for the purine moieties since chemically equivalent distances and angles were in severe disagreement both with each other and with the values observed in the free ligand (Brown, 1969; Sletten \& Apeland, 1975). Examination of the positional parameters reported by C \& N suggested to us that the molecule may be centrosymmetric, while C \& N chose to refine their structure in the noncentrosymmetric space group $P 1$. Hence, we obtained a copy of their data (British Library Lending Division, Supplementary Publication No. SUP 30851) and have refined the structure in the centrosymmetric space group $P \overline{1}$.

Initial heavy atom parameters were obtained from $C \& N$, using the values reported for their molecule A transformed so that the origin in $P \overline{1}$ was in the center of their reported $\mathrm{Cu} A-\mathrm{Cu} B$ vector. Least-squares refinement was carried out on F; unit weights were applied to the data in order to facilitate the comparison of our results with those of C \& N. Scattering factors for Cu were from Cromer \& Waber

[^0](1965), those for $\mathrm{S}, \mathrm{Cl}, \mathrm{N}, \mathrm{O}$ and C from International Tables for X-ray Crystallography (1962), and those for \mathbf{H} from Stewart, Davidson \& Simpson (1965). The effects of the anomalous dispersion of Cu, S, and Cl were included in calculations of F_{c} (Ibers \& Hamilton, 1964), the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ being taken from the tabulation of Cromer \& Liberman (1970). The hydrogen atoms were located in a difference Fourier map, and were included in the final refinement. In the final cycle of least-squares refinement all heavy atoms were refined anisotropically and all hydrogen atoms were refined isotropically; the final values of the agreement indices $R_{1}\left(=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$ and $R_{2}\{=$ $\left.\left[\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma\left|F_{o}\right|^{2}\right]^{1 / 2}\right\}$ were 0.046 and 0.051 , respectively.

In the final cycle of least-squares refinement, no atomic parameter exhibited a shift of more than $0 \cdot 29 \sigma$, which is taken as evidence that the refinement had converged. A final difference Fourier map contained peaks as large as $1.0 \mathrm{e} \AA^{-3}$ in the vicinity of the copper atom. This residual density is presumably due to the neglect of absorption effects; since the indices of the faces and the orientation of the crystal used by $\mathrm{C} \& \mathrm{~N}$ were not reported, we were unable to apply an absorption correction. Examination of the data suggested to us that no correction for secondary extinction was necessary, and none was applied.

Our final (centrosymmetric) refinement involved 1725 observations and 155 variables, and yielded a final R value of 0.046 ; the noncentrosymmetric refinement of $C \& N$ involved 1704 reflections and (presumably) 153 variables and yielded a final R value of 0.051 . While statistical comparison should more properly be based on the values of R_{2}, since this is the function minimized in the least-squares process, we are unable to do this since $\mathrm{C} \& \mathrm{~N}$ do not report a value for R_{2}. Since the two refinements used the same weighting scheme, however, statistical comparison on the basis of R_{1} is valid. The observed improvement, using the same data, is significant at all meaningful confidence levels

Table 1. Positional and thermal parameters for $\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{~S}\right)_{2} \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
Anisotropic thermal parameters $\times 10^{4}$. The form of the anisotropic thermal ellipsoid is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{33} k l\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cu	$1 \cdot 15299$ (7)	$0 \cdot 1533$ (1)	1.0909 (1)	48 (1)	163 (2)	135 (2)	43 (1)	-19(1)	-68(1)
$\mathrm{Cl}(1)$	$1 \cdot 1752$ (2)	$0 \cdot 3028$ (2)	1.4058 (2)	53 (1)	128 (3)	90 (3)	42 (2)	-31 (2)	-72 (2)
$\mathrm{Cl}(2)$	$1 \cdot 3713$ (1)	$0 \cdot 1298$ (2)	1.0879 (2)	38 (1)	109 (2)	88 (3)	13 (1)	5 (2)	-19 (2)
S	$0 \cdot 9661$ (1)	$0 \cdot 1777$ (2)	$0 \cdot 8274$ (2)	31 (1)	85 (2)	78 (3)	21 (1)	-5 (2)	-36 (2)
N(1)	$0 \cdot 8893$ (5)	$0 \cdot 3452$ (6)	$1 \cdot 1158$ (7)	36 (5)	81 (8)	70 (9)	17 (5)	-21 (6)	-37 (7)
N(3)	0.6789 (4)	$0 \cdot 4451$ (5)	1.0986 (6)	41 (5)	71 (7)	77 (9)	15 (5)	1 (5)	-26 (7)
N(7)	0.6396 (4)	0.2421 (6)	$0 \cdot 6129$ (6)	43 (5)	75 (8)	50 (9)	12 (5)	-12 (5)	-19 (7)
N(9)	$0 \cdot 5141$ (5)	$0 \cdot 3747$ (6)	0.7593 (6)	32 (5)	97 (8)	79 (10)	24 (5)	$-3(6)$	-7 (7)
C(2)	$0 \cdot 8055$ (5)	0.4233 (7)	$1 \cdot 1963$ (8)	36 (6)	76 (9)	68 (12)	10 (6)	-14 (6)	-37 (8)
C(4)	$0 \cdot 6408$ (5)	0.3760 (6)	0.9021 (7)	29 (5)	43 (8)	65 (11)	5 (5)	0 (6)	-7 (7)
C(5)	$0 \cdot 7200$ (5)	$0 \cdot 2942$ (6)	$0 \cdot 8111$ (7)	31 (5)	36 (8)	51 (10)	2 (5)	-12 (6)	$-11(7)$
C(6)	$0 \cdot 8564$ (5)	$0 \cdot 2747$ (6)	0.9195 (7)	31 (5)	33 (8)	57 (11)	-2 (5)	-4 (6)	-16(7)
C(8)	0.5186 (6)	0.2909 (7)	$0 \cdot 5885$ (8)	34 (6)	83 (9)	62 (12)	14 (6)	-21 (7)	-2 (8)
0	$0 \cdot 7217$ (8)	$0 \cdot 0494$ (8)	$0 \cdot 3580$ (10)	125 (8)	150 (11)	94 (12)	65 (8)	-9(8)	-47 (9)

	Table 1 (cont.)			
	x	y	z	$B\left(\AA^{2}\right)$
H(N9)	$0.444(6)$	$0.398(7)$	$0.791(8)$	$0.8(10)$
H(N7)	$0.672(6)$	$0.190(8)$	$0.525(9)$	$1.7(12)$
H(C2)	$0.838(6)$	$0.453(8)$	$1.341(9)$	$2.0(12)$
H(N1)	$0.959(7)$	$0.323(8)$	$1.196(10)$	$1.9(13)$
H(C8)	$0.452(8)$	$0.280(9)$	$0.482(11)$	$3.3(16)$
H(O1)	$0.768(11)$	$0.003(14)$	$0.386(16)$	$5.1(31)$
H(O2)	$0.698(13)$	$0.021(16)$	$0.286(17)$	$7.3(40)$

(Hamilton, 1965) and strongly supports the conclusion that the correct space group is $P \overline{1}$. This conclusion is further supported by the derived bond lengths and angles (vide infra).

The positional and thermal parameters, along with their associated standard deviations as estimated from the inverse matrix, are presented in Table 1. The standard deviations are smaller than those reported by $\mathrm{C} \& \mathrm{~N}$ by a factor of about 5.

A view of the dimeric unit is shown in Fig. 1. While the gross structural features are, of course, similar to those reported by $\mathrm{C} \& \mathrm{~N}$, the purine ring geometry derived from our refinement differs markedly from that obtained previously. The bond lengths found for the coordinated purine ligand here are compared with those of $\mathrm{C} \& \mathrm{~N}$, and also with those reported for the free ligand and for other transition metal complexes of 6-mercaptopurine (Heitner \& Lippard, 1974; Sletten \& Apeland, 1975) in Table 2. It is apparent from an examination of Table 2 that the values which we have determined are consistent with those found in the

Fig. 1. View of the dimeric unit, showing the bond lengths involving copper. Hydrogen atoms are shown as open circles of arbitrary size. Thermal ellipsoids are drawn at the 50% probability level.
related systems. The bond lengths associated with the copper atom are shown in Fig. 1, and are similar to $\mathrm{Cu}-\mathrm{Cl}$ and $\mathrm{Cu}-\mathrm{S}$ distances reported by other workers (Hunt \& Amma, 1973).

The hydrogen bonding in the complex is as reported by $\mathrm{C} \& \mathrm{~N}$, with the exception that we observe an additional probable $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}(1)$ hydrogen bond with $\mathrm{O} \cdots \mathrm{Cl}(1)=$ $3.315 \AA$, and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}(1)$ angle of 143°. This interaction meets the criterion (Hamilton \& Ibers, 1968) that both the $\mathrm{O}-\mathrm{H}$ and the $\mathrm{H} \cdots \mathrm{Cl}$ separations are less than the appropriate sums of the van der Waals radii (Pauling, 1960; Bondi, 1964) and hence is probably a weak hydrogen bond.

This research was supported by Public Health Service Research Grant No. CA-15171-02 from the National Cancer Institute.

References

Bondi, A. (1964). J. Phys. Chem., 68, 441-451.
Brown, G. M. (1969). Acta Cryst. B25, 1338-1353
Caira, M. R. \& Nassimbeni, L. R. (1975). Acta Cryst. B31, 1339-1343.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104 109.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids. New York: Benjamin.
Heitner, H. I. \& Lippard, S. J. (1974). Inorg. Chem. 13, 815-822.
Hunt, G. W. \& Amma, E. L. (1973). Chem. Commun. pp. 869-870.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Purnell, L. G., Estes, E. D. \& Hodgson, D. J. (1976). J. Amer. Chem. Soc. In the press.

Purnell, L. G., Shepherd, J. C. \& Hodgson, D. J. (1975). J. Amer. Chem. Soc. 97, 2376-2380.

Sletten, E. \& Apeland, A. (1975). Acta Cryst. B31, 20192023.

Sletten, E., Sletten, J. \& Jensen, L. H. (1969). Acta Cryst. B25, 1330-1338.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Table 2. Bond lengths (\AA) in the 6 -mercaptopurine ($6-\mathrm{MP}$) ligand

Bond	This work	C \& N (a)		$\underset{(\text { b })}{\mathrm{Pd}(9-\mathrm{Bz}-6 \mathrm{MP})_{2}}$		$\mathrm{Cu}(9-\mathrm{Me}-6-\mathrm{MP}) \mathrm{Cl}$ (c)	$6-\mathrm{MP}-\mathrm{H}_{2} \mathrm{O}$ (d)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.343 (7)	$1 \cdot 31$ (4)	$1 \cdot 37$ (4)	1.35 (2)	$1 \cdot 37$ (2)	1.368	1.354
$\mathrm{C}(2)-\mathrm{N}(3)$	1.308 (7)	$1 \cdot 39$ (3)	1.24 (3)	1.36 (2)	1.36 (2)	1.306	1.308
$\mathrm{N}(3)-\mathrm{C}(4)$	1.364 (7)	$1 \cdot 33$ (3)	$1 \cdot 40$ (3)	1.34 (1)	1.34 (1)	1.351	1.363
$\mathrm{C}(4)-\mathrm{C}(5)$	1.364 (7)	$1 \cdot 32$ (4)	$1 \cdot 41$ (3)	$1 \cdot 39$ (1)	$1 \cdot 37$ (1)	1.372	1.396
$\mathrm{C}(5)-\mathrm{C}(6)$	1.406 (7)	$1 \cdot 39$ (3)	$1 \cdot 44$ (3)	$1 \cdot 37$ (1)	$1 \cdot 37$ (1)	1.378	1.401
$\mathrm{C}(6)-\mathrm{N}(1)$	1.370 (7)	$1 \cdot 44$ (3)	$1 \cdot 33$ (3)	$1 \cdot 35$ (1)	$1 \cdot 34$ (1)	1.357	1.378
$\mathrm{C}(6)-\mathrm{S}$	1.686 (6)	$1 \cdot 72$ (2)	$1 \cdot 65$ (3)	$1 \cdot 72$ (1)	1.72 (1)	1.692	1.678
$\mathrm{C}(5)-\mathrm{N}(7)$	1.386 (7)	$1 \cdot 43$ (3)	1.36 (2)	$1 \cdot 37$ (1)	$1 \cdot 36$ (1)	1.364	1.372
$\mathrm{N}(7)-\mathrm{C}(8)$	1.307 (7)	$1 \cdot 29$ (3)	$1 \cdot 36$ (3)	$1 \cdot 34$ (1)	$1 \cdot 34$ (1)	1.316	1.349
$\mathrm{C}(8)-\mathrm{N}(9)$	1.343 (7)	$1 \cdot 39$ (3)	$1 \cdot 27$ (4)	$1 \cdot 37$ (1)	1.35 (1)	1.361	1.330
$\mathrm{N}(9)$-C(4)	$1 \cdot 376$ (7)	$1 \cdot 36$ (3)	$1 \cdot 39$ (3)	$1 \cdot 38$ (1)	$1 \cdot 37$ (1)	$1 \cdot 360$	1.366

(a) Caira \& Nassimbeni (1975), (b) Heitner \& Lippard (1974), (c) Sletten \& Apeland (1975), (d) values given are the averages of two: Brown (1969); Sletten, Sletten \& Jensen (1969).

[^0]: * Editorial note: - The main points of this paper have already been made [Pope, Laing, Caira \& Nassimbeni, Acta Cryst. (1976), B32, 612-613]. It is however, thought worth while to publish it, as an illustration of the reproducibility of crystallographic data refined by different procedures. The biggest difference in bond length seems to be for $N(7)-C(8)$, where it amounts to 2.4 times the combined standard deviations.

